Models 72741, 73741 and 74741

1- or 2-Channel 3.6 GHz and 2- or 4-Channel 1.8 GHz, 12-bit A/D, w/ Wideband DDC, Virtex-7 FPGA - cPCI

General Information
Models 72741, 73741 and 74741 are members of the Onyx® family of high performance CompactPCI boards based on the Xilinx Virtex-7 FPGA. They consist of one or two Model 71741 XMC modules mounted on a cPCI carrier board.

Model 72741 is a 6U cPCI board while the Model 73741 is a 3U cPCI board; both are equipped with one Model 71741 XMC. Model 74741 is a 6U cPCI board with two XMC modules rather than one.

These models include one or two 3.6 GHz, 12-bit A/D converters, four or eight banks of memory, and one or two wideband DDCs

The Onyx Architecture
Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board’s analog interfaces. The factory-installed functions of these models include one or two A/D acquisition IP modules and one or two wideband DDCs.

In addition, IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable these models to operate as complete turnkey solutions, without the need to develop any FPGA IP.

Extendable IP Design
For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA
The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73741; J3 connector, Model 72741; J3 and J5 connectors, Model 74741.

Features
- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- Programmable one- or two-channel DDCs (Digital Downconverters)
- 4 or 8 GB of DDR3 SDRAM
- µSync clock/sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
A/D Acquisition IP Module

These models feature one or two A/D Acquisition IP Modules for easy capture and data moving. The IP modules can receive data from the A/D, or a test signal generator. The IP modules have associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode.

In single-channel mode, all banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor’s job of identifying and executing on the data.

DDC IP Cores

Within the FPGA is a powerful DDC IP core. The core supports a single-channel mode, accepting data samples from the A/D at the full 3.6 GHz rate. Additionally, a dual-channel mode supports the A/D’s 1.8 GHz two-channel operation.

In dual-channel mode, each DDC has an independent 32-bit tuning frequency setting that ranges from DC to f_s, where f_s is the A/D sampling frequency.

In single-channel mode, decimation can be programmed to 8x, 16x or 32x. In dual-channel mode, both channels share the same decimation rate, programmable to 4x, 8x or 16x.

The decimating filter for each DDC accepts a unique set of user-supplied 16-bit coefficients. The 80% default filters deliver an output bandwidth of 0.8*f_s/N, where N is the decimation setting. The rejection of adjacent-band components within the 80% output bandwidth is better than 100 dB. Each DDC delivers a complex output stream consisting of 16-bit I + 16-bit Q samples at a rate of f_s/N.

GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

The board’s configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board’s PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored.
Memory Resources

The Onyx architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board’s DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

PCI-X Interface

These models include an industry-standard interface fully compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits and data rates of 33 and 66 MHz are supported.

Model 73741: 32 bits only.

Clocking and Synchronization

These models accept a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel µSync bus connector allows multiple boards to be synchronized, ideal for multichannel systems. The µSync bus includes gate, reset, and in and out reference clock signals. Two boards can be synchronized with a simple cable. For larger systems, multiple boards can be synchronized using the Models 7292, 7392 or 7492 high-speed sync boards to drive the sync bus.

Specifications

Model 72741 or Model 73741: One A/D
Model 74741: Two A/Ds

Front Panel Analog Signal Inputs (2 or 4)

Function: Transformer-coupled, front panel female SSMC connectors

A/D Converters (1 or 2)

Type: Texas Instruments ADC12D1800
Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz
Resolution: 12 bits
Input Bandwidth: Single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz
Full Scale Input: +2 dBm to +4 dBm, programmable

Digital Downconverters (2 or 4)

Modes: One or two channels, programmable

Supported Sample Rate: One-channel mode: 3.6 GHz, two-channel mode: 1.8 GHz
Decimation Range: One-channel mode: 8x, 16x or 32x, two-channel mode: 4x, 8x, or 16x
LO Tuning Freq. Resolution: 32 bits, 0 to f_s
LO SFDR: >120 dB
Phase Offset Resolution: 32 bits, 0 to 360 degrees
FIR Filter: User-programmable 18-bit coefficients
Default Filter Set: 80% bandwidth, <0.3 dB passband ripple, >100 dB stopband attenuation

Sample Clock Sources (1 or 2)

Front panel SSMC connector

External Trigger Input (1 or 2)

Type: Front panel female SSMC connector, LV TTL
Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Arrays (1 or 2)

Standard: Xilinx Virtex-7 XC7VX330T
Optional: Xilinx Virtex-7 XC7VX690T-2

Custom I/O

Option -104: Provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73741; J3 connector, Model 72741; J3 and J5 connectors, Model 74741

Memory Banks (1 or 2)

Type: DDR3 SDRAM
Size: Four banks, 1 GB each
Speed: 800 MHz (1600 MHz DDR)

PCI-X Interface

PCI-X Bus: 32 or 64 bits at 33 or 66 MHz
Model 73741: 32 bits only

Environmental

Operating Temp: 0° to 50° C
Storage Temp: -20° to 90° C
Relative Humidity: 0 to 95%, non-cond.

Size: Standard 6U or 3U cPCI board

A/D data capture, tagging and functions include multichannel DMA packets. Built-in memory DMA capabilities, providing integral part of the board’s bank is 1 GB deep and is an SDRAM memory banks. Each ports four independent DDR3 74741 2-Ch. 3.6 GHz or 4-Ch. 73741 1-Ch. 3.6 GHz or 2-Ch. 72741 1-Ch. 3.6 GHz or 2-Ch.

Model Description

PCI-X Interface

Memory Resources

These models include an industry-standard interface fully compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits and data rates of 33 and 66 MHz are supported.

Model 73741: 32 bits only.

Clocking and Synchronization

These models accept a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel µSync bus connector allows multiple boards to be synchronized, ideal for multichannel systems. The µSync bus includes gate, reset, and in and out reference clock signals. Two boards can be synchronized with a simple cable. For larger systems, multiple boards can be synchronized using the Models 7292, 7392 or 7492 high-speed sync boards to drive the sync bus.

Specifications

Model 72741 or Model 73741: One A/D
Model 74741: Two A/Ds

Front Panel Analog Signal Inputs (2 or 4)

Function: Transformer-coupled, front panel female SSMC connectors

A/D Converters (1 or 2)

Type: Texas Instruments ADC12D1800
Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz
Resolution: 12 bits
Input Bandwidth: Single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz
Full Scale Input: +2 dBm to +4 dBm, programmable

Digital Downconverters (2 or 4)

Modes: One or two channels, programmable

Supported Sample Rate: One-channel mode: 3.6 GHz, two-channel mode: 1.8 GHz
Decimation Range: One-channel mode: 8x, 16x or 32x, two-channel mode: 4x, 8x, or 16x
LO Tuning Freq. Resolution: 32 bits, 0 to f_s
LO SFDR: >120 dB
Phase Offset Resolution: 32 bits, 0 to 360 degrees
FIR Filter: User-programmable 18-bit coefficients
Default Filter Set: 80% bandwidth, <0.3 dB passband ripple, >100 dB stopband attenuation

Sample Clock Sources (1 or 2)

Front panel SSMC connector

External Trigger Input (1 or 2)

Type: Front panel female SSMC connector, LV TTL
Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Arrays (1 or 2)

Standard: Xilinx Virtex-7 XC7VX330T
Optional: Xilinx Virtex-7 XC7VX690T-2

Custom I/O

Option -104: Provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73741; J3 connector, Model 72741; J3 and J5 connectors, Model 74741

Memory Banks (1 or 2)

Type: DDR3 SDRAM
Size: Four banks, 1 GB each
Speed: 800 MHz (1600 MHz DDR)

PCI-X Interface

PCI-X Bus: 32 or 64 bits at 33 or 66 MHz
Model 73741: 32 bits only

Environmental

Operating Temp: 0° to 50° C
Storage Temp: -20° to 90° C
Relative Humidity: 0 to 95%, non-cond.

Size: Standard 6U or 3U cPCI board

on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx IMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.